সহজ গণিত শিক্ষা : লগারিদম

1437 online pharmacy in perth australia

বার পঠিত

মাধ্যমিকে পড়ার সময় আমার জন্য একটা বিভীষিকার নাম ছিল লগারিদম। কতগুলো হিজিবিজি বীজগাণিতিক সংকেত আর x, y, e এর প্যাচে পড়ে জীবনের অনেকটা সময় ফালাফালা হয়ে গেছে। তবে, ভয় পেয়ে কোন কিছুকে দূরে ঠেলে দিতে বা পিছু ফিরে আসতে কখনই পছন্দ করতাম না। এখানেও আসলাম না। নেট ঘেটে যতটুকু পারা যায় লগারিদম নিয়ে জানাশোনা বাড়ালাম। তাতে, স্কুলের রেজাল্টের হয়তো উন্নতি হয়নি, কিন্তু এই বিদঘুটে জিনিসটার প্রতি ভালবাসা তৈরি হতে সময় লাগেনি। শুনেছি, ভালবাসা নাকি ছড়িয়ে দিলে বেড়ে যায়। অনেক দিন ধরেই ভালবাসার এই এই অদ্ভুত ইকুয়েশনটার লাইভ এক্সপেরিমেন্ট করার কথা ভাবছিলাম। কিন্তু, করা আর হয়ে ওঠে না। তাই আজকে সব আলসেমি ঝেড়ে বসেই পড়লাম কিবোর্ড নিয়ে।

লগারিদম কী? কোন দাঁতভাঙ্গা সংজ্ঞার দিকে আমরা না যাই। খুব সহজ কথায়, log­bx এর মান হচ্ছে p, যেখানে x = bp. এখানে b কে বলা হয় লগের ভিত্তি বা base. অর্থাৎ, কোন সংখ্যার লগের মান হচ্ছে, লগের ভিত্তির ঘাত (power) যত হলে তার মান ওই সংখ্যার সমান হয়। এখানে লগের ভিত্তি হচ্ছে b. তার ঘাত p হলে মান x এর সমান হয়। তাই x এর b ভিত্তিক লগের মান p. বীজগাণিতিক সংজ্ঞা বুঝতে সমস্যা হলে উদাহরণ দিয়ে বোঝানো যাক। মনে করি, log101000 এর মান বের করতে হবে। এখন 10 এর ঘাত যদি 3 হয়, তাহলে তার মান 1000 হবে। তাহলে, log101000 এর মান হচ্ছে 3. একই ভাবে log21024 এর মান 10.

এই সহজ জিনিসটুকু যখন বুঝে গেলাম, লগারিদমের মুখস্থ করে গেলানো অনেক সূত্রই তখন সহজবোধ্য হয়ে গেল। যেমন ধরা যাক, logbb = 1. কিভাবে? খুব সহজ। b এর ঘাত 1 হলেই তার মান b. সুতরাং, logbb এর মান 1.

আবার logb1 এর মান শূন্য। কারণ, ভিত্তি যাই হোক না কেন, তার ঘাত শূন্য হলেই মান 1 হবে।

আবার ধরা যাক, logbxy = logbx + logby. লগারিদমের অংক যারা করেছে, তাদের খুব পরিচিত সূত্র। কিন্তু, কিভাবে?
মনে করি, x = bp এবং y = bq. তাহলে আমরা লিখতে পারি, xy = bp+q. সুতরাং, logbxy = logbbp+q = p+q.
আবার, logbx = p এবং logby = q. তাহলে p+q = logbx + logby. এখান থেকে লেখা যায়, logbxy = logbx + logby.

যদি গুণের ক্ষেত্রে লগ কেন, যোগ করে বুঝে থাকেন, তাহলে ভাগের ক্ষেত্রে কেন বিয়োগ করে অর্থাৎ, logbx/y = logbx – logby এই সূত্র বুঝতেও সমস্যা হবার কথা না। 2nd course of accutane side effects

লগারিদমের ভিত্তি যা খুশি হতে পারে। এর কোন বাধা ধরা নিয়ম নেই। তবে, নির্দিষ্ট কিছু ভিত্তি বেশি ব্যবহার করা হয়। তার মধ্যে সবার আগে আসে 10. সাধারণভাবে এটিই সবচেয়ে বেশি ব্যবহার করা হয়। আমাদের ক্যালকুলেটরে সাধারণত যেই log থাকে সেটার ভিত্তি দশ। যদি, লগের ভিত্তি লেখা না থাকে, তাহলে ধরে নিতে হয় এর ভিত্তি হচ্ছে 10. এর পরে বেশি ব্যবহার করা হয় e ভিত্তিক লগ। e একটি অমূলদ সংখ্যা। এর মান প্রায় 2.71828. মূলত, প্রকৌশল বিদ্যায় e ভিত্তিক লগের ব্যবহার বেশি। একে ন্যাচারাল লগারিদম বলা হয় এবং ln দিয়ে প্রকাশ করা হয়। ln দ্বারা বোঝায় কোন সংখ্যার e ভিত্তিক লগ। এছাড়াও কম্পিউটার বিজ্ঞানে এবং ইলেকট্রনিক্সে 2 ভিত্তিক লগের প্রচুর ব্যবহার রয়েছে।

এ তো গেল লগারিদমের সাধারণ আলোচনা। কিন্তু, এর ব্যবহার কী? এতক্ষণের আলোচনা থেকে বুঝে ফেলার কথা, লগারিদমের মূল ব্যবহার হচ্ছে বড় সংখ্যাকে ছোট আকারে প্রকাশ করা। উদারহণ হিসেবে রিখটার স্কেলের কথা বলা যায়। আমরা জানি, ভূমিকম্পের তীব্রতার একক হিসেবে রিখটার স্কেল ব্যবহার করা হয়ে থাকে। রিখটার স্কেলেও 10 ভিত্তিক লগ ব্যবহার করে হিসাব করা হয়। এর কারণে, রিখটার স্কেলে ৪ মাত্রার ভূমিকার চেয়ে ৫ মাত্রার ভূমিকম্প দশ গুণ বেশি শক্তিশালী হয়। আবার ৪ মাত্রার ভূমিকম্পের তুলনায় ৭ মাত্রার ভূমিকম্প এক হাজার গুণ বেশি শক্তিশালী।

শব্দের তীব্রতা মাপার একক ডেসিবেলও লগারিদম ব্যবহার করে হিসাব করা হয়। কারণ, একই। বড় পরিবর্তনকে ছোট আকারে প্রকাশ করা।

পানির অম্লত্ব পরিমাপের একক pH নির্ণয়েও রয়েছে লগারিদমের ব্যবহার। এটি মূলত হিসাব করা হয় প্রতি লিটার পানিতে কত সংখ্যক ধনাত্মক হাইড্রোজেন আয়ন রয়েছে। এর মান 0.0000001 থেকে প্রায় 1 পর্যন্ত হতে পারে। মানের এই বিশাল পরিবর্তন মনে রাখা কঠিন বৈকি। তাই লগ ব্যবহার করে এই সীমাকে 0 থেকে 7 এর মধ্যে নামিয়ে আনা হয়েছে। 0 থেকে 7 এর মধ্যে একটা সংখ্যা মনে রাখা নিশ্চিতভাবেই সহজ।

জ্যামিতি, মনোবিদ্যা, সম্ভাব্যতা, পরিসংখ্যান, বিন্যাস, কম্পিউটার বিজ্ঞান, সংখ্যাতত্ত্ব এমনকি সঙ্গীতেও রয়েছে লগারিদমের ব্যবহার।

সব শেষে লগারিদম নিয়ে গণিতের কিছু মজার সমস্যা নিয়ে আলোচনা করা যাক।

ধরুন, একটা লাইটে তিন রংয়ের আলো জ্বলে। আপনি এমন লাইট নিয়ে ৮১ রকম সংকেত তৈরি করতে চান। তাহলে আপনার মোট দরকার হবে, log381 = 4টি লাইট।

আবার লগ দিয়ে চাইলে আমরা কোন সংখ্যাতে কয়টি অঙ্ক (Digit) রয়েছে, সেটাও বের করতে পারি। সমস্যা দেখার আগে আবার ওপরে পড়া কিছু জিনিস মনে করিয়ে দিই। আলোচনার সুবিধার্থে আমরা কেবল 10 ভিত্তিক লগ বিবেচনা করি। তাহলে 10 এর লগ হচ্ছে 1. আবার 100 এর লগ হচ্ছে 2. সুতরাং, 10 থেকে 100 এর ভেতরে যে কোন সংখ্যার লগ হবে এক দশমিক কিছু একটা। একইভাবে 100 থেকে 1000 এর ভেতরে যেকোন সংখ্যার লগ হবে 2 দশমিক কিছু। কারণটা কি ধরতে পারছেন? দশ ভিত্তিক সংখ্যায় আমরা যখন কোন সংখ্যাকে দশ দিয়ে গুণ করি, তখন অঙ্কের সংখ্যা এক বাড়ে আবার ঘাতও এক বাড়ে। এদিকে ঘাত এক বাড়া মানেই লগের মান এক বাড়া। সুতরাং, অঙ্কের সংখ্যা এবং লগের মান একই সাথে বাড়ে। এখন যেহেতু, log10 এর মান 1 এবং এটি দুই অংক বিশিষ্ট, তাই লগের মানের সাথে এক যোগ করে ভগ্নাংশটুকু বাদ দিলেই আমরা অঙ্কের সংখ্যা পেয়ে যাব। যেমন, log678 এর মান 2.83. এর সাথে এক যোগ করে ভগ্নাংশটুকু বাদ দিলে পাই 3 যা এর অঙ্ক সংখ্যা।

এখন হয়তো আপনি চিন্তা করতে পারেন, এত কষ্ট করে অঙ্ক বের করার কী দরকার? অঙ্কের সংখ্যা তো কী সুন্দর গুণে গুণেই বের করে ফেলা যায়। মজার ব্যাপার হচ্ছে, এই পদ্ধতিতে আপনি শুধু 10 ভিত্তিক নয়, বরং যেকোন ভিত্তিক সংখ্যার অঙ্কের সংখ্যা বের করে ফেলতে পারবেন। শুধু লগের ভিত্তিটা বদলে দিলেই হবে। যেমন, log215 = 3.9. দশমিক অংশ বাদ দিয়ে এক যোগ করে পাই 4. আবার 15 কে দুই ভিত্তিক সংখ্যায় লেখা হয় 1111. একই ভাবে 16 ভিত্তিক সংখ্যায় 1024 এর অঙ্কের সংখ্যা log161024 + 1 = 2.5 + 1 = 3.5 অর্থাাৎ 3. female viagra tablets online

কিন্তু, সাধারণ ক্যালকুলেটরে সকল সংখ্যার লগ বের করা যায় না। কেবলমাত্র 10 ভিত্তিক লগ এবং ln বের করা যায়। তাহলে বাকিগুলোর ক্ষেত্রে কী করা যায়? একটু খেয়াল করি। 64 এর 2 ভিত্তিক লগ হচ্ছে 6 আর 8 ভিত্তিক লগ 2. আবার 512 এর 2 ভিত্তিক লগ হচ্ছে 9 আর 8 ভিত্তিক লগ 3. কোন মিল কি খেয়াল করা যাচ্ছে? কোন সংখ্যার 2 ভিত্তিক লগের মান এক সংখ্যার 8 ভিত্তিক লগের মানের তিন গুন। এমনটা হচ্ছে কারণ, 8 এর 2 ভিত্তিক লগের মান 3. 8কে দুবার গুণ করার অর্থ হল 2কে ছয়বার গুণ করা। 8কে চারবার গুণ করার অর্থ 2কে বারোবার গুণ করা। তাই, যদি আমাদের কাছে 2 ভিত্তিক লগ থাকে আর আমাদের 8 ভিত্তিক লগের মান বের করতে হয়, তাহলে 2 ভিত্তিক লগের মানকে 3 দিয়ে ভাগ করলেই আমরা কাঙ্ক্ষিত ফলাফল পাব। একই ভাবে, আমাদের কাছে যদি 10 ভিত্তিক লগ থাকে আর আমাদের 16 ভিত্তিক লগের মান দরকার হয়, তাহলে 10 ভিত্তিক লগের মানকে log16 দিয়ে ভাগ করলেই 16 ভিত্তিক লগের মান পেয়ে যাব। অর্থাৎ, x এর y ভিত্তিক লগের মান হচ্ছে logbx/logby. এভাবে আমরা যে কোন ভিত্তির লগের মান বের করে ফেলতে পারি।

এই জিনিসগুলো হয়তো খুব কঠিন কিছু না। প্রথম দেখায় একটু ঘোলাটে মনে হতে পারে। কিন্তু, একটু বোঝার চেষ্টা করলেই সেটা জলবৎ তরলং। কিন্তু, আমাদের শিক্ষার সূত্র মুখস্থকরণ নীতির কারণে কখনই আমাদের ভিত্তিটা শক্ত করে গড়ে ওঠে না। আর তাই, বিজ্ঞানের ভাষাটাই আমাদের জানা হয়ে ওঠে না।

গণিত হোক সুন্দর! গণিত হোক সবার।

lasix tabletten

You may also like...

  1. তারিক লিংকন বলছেনঃ

    অবুক!! পিওর ম্যাথস… গনিতে একসময় খুব প্রীতি ছিল এখনও আছে! ভীতি হবেও না, তবে ব্লগে এসে টেক্সট বইয়ের বিষয় কেউ পড়তে চায় না!! ভালো লাগলো, বিশেষ করে যারা পড়াশুনায় আছে তাদের খুব কাজে লাগবে… prednisone 10mg dose pack poison ivy

    আর ভালো কথা!
    গণিত সুন্দরই আছে, সবারই আছে…
    গণিত সুন্দর, গণিত শাশ্বত…

  2. ŠØJÎB বলছেনঃ

    729এর 3 ভিত্তিতে লগারিদাম কত।

  3. হাপ্প্য মেলন বলছেনঃ diflucan 150 infarmed

    use metolazone before lasix

    729এর 3 ভিত্তিতে লগারিদাম

    cialis online australia

প্রতিমন্তব্যপারভেজ এম রবিন বাতিল

আপনার ই-মেইল ও নাম দিয়ে মন্তব্য করুন *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Heads up! You are attempting to upload an invalid image. If saved, this image will not display with your comment.

domperidona motilium prospecto
cialis 10 mg costo